Home: Services / Simulation Analysis

Simulation Programming and Analysis

How confident are you about uncertainty?

Simulations programming can be used to find mathematical problems that cannot easily be solved. The profit distribution of your business is one good example.

Monte Carlo Simulation Programming

A Monte Carlo algorithm is often used to find solutions to mathematical problems (which may have many variables) that cannot be easily solved. This Monte Carlo simulation section illustrates two examples of how Excel VBA can be utilized for building simulation models, specifically in hydraulic engineering and market analysis.

Monte Carlo Simulation Example (1)

The hydraulic engineering simulation project utilized Pearson Type III distribution. Provided the mean, standard deviation, skewness, and other inputs, the discharge-frequency curve with 95% confidence interval uncertainty bans is constructed. The screen shot is shown on Figure 1. below.

Fig 1. Screen shot of the hydraulic simulation project

Monte Carlo Simulation Example (2)

This model is taken from our XL Modeling VBA program. Given the market assumption, profit equation, and input variables distributions (uniform, normal, and truncate normal), we derived the probability distribution of the profit and generate the histogram.

From the probability distribution, we can obtain the probability of the profit that excesses any given number of value. We can also obtain the median and average of the profit from the distribution.

Fig 2. Screen shot of the profit/market simulation program

Quick Contact Box

Data Quality Services

The importance of data management is often overlooked by many companies. They frequently underestimate the important contribution data management makes to the success or failure of their operations. Data quality is vital to business intelligence. Companies typically spend thousands and even millions of dollars setting up business intelligence systems to improve their operations, but the results generated by these efforts are only as good as the data that is fed into them.

Many fall short of their expectations because of poor data quality issues. Contradictory, inconsistent or inaccurate information exposes companies to many business risks that lead to increased costs, customer dissatisfaction, poorer decision making and lost business. Clean, high quality data helps company decision makers to accurately and correctly assess their business activities and avoid potential pitfalls that can significantly impair a company's profitability.

At Excel Business Solutions we offer companies with data cleansing, data integration, data enrichment and data mining services in support of accurate reporting, analysis and business decisions; and consequenentially, minimize risk and cost, enhance business opportunity and increase returns.
More Info